

How to make a node of IoT by using

OrangePi i96

Juozas Kimtys - How to make a node of IoT
by using OrangePi i96 – doc. ver.2.0

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 1

Table of contents:

Table of figures ___ 1

First impression __ 2

Creating Debian system card __ 4

Serial console __ 4

Removing alsa ___ 6

Configuring SSH __ 8

Configuring GPIO ___ 9

Installing Node.js __ 12

Setting local time zone __ 13

Installing Node-RED __ 14

Make Node-RED to work as a service __ 15

Open and edit files with MobaXterm __ 17

Blink LED (Node.js) ___ 19

Using I2C ADC (Node.js) ___ 21

Not success of using SPI ADC (Node.js) ___ 26

Revision History ___ 29

Table of figures

Figure 1 - Options of OrangePi i96 on picture from manufacturer's site ... 3

Figure 2 - At first run the system (Debian) will resize disk partition... 4

Figure 3 - Signal on TX pin of the module during initialization of the system .. 5

Figure 4 - Debian console first dialog. ... 5

Figure 5 – Debian console dialog after sudo orangepi-config .. 6

Figure 6 - Selections to configure Wi-Fi .. 7

Figure 7 - Console dialog to enter Wi-Fi AP name .. 7

Figure 8 - Debian console after the command 'ip addr' ... 7

Figure 9 - Ubuntu console dialog after sudo orangepi-config .. 8

Figure 10 - Debian console dialog Enable SSH (under Advanced settings) ... 8

Figure 11 – Debian SSH console session from Windows PowerShell ... 9

Figure 12 - Console dialog after sudo orangepi-config ... 9

Figure 13 - Console dialog GPIO settings .. 10

Figure 14 - Default GPIO map after the command sudo gpio readall .. 10

Figure 15 - Console dialog getting gpio_fixup.py .. 11

Figure 16 - Console dialog executing sudo python3 gpio_fixup.py .. 11

Figure 17 - GPIO map on MobaXterm console dialog after correcting gpio ... 12

Figure 18 - Our server's Node-RED web page on browser running on our Windows 15

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 2

Figure 19 - Allowing execute nodered.service file .. 17

Figure 20 - MobaXterm program window after connection to our Debian server 18

Figure 21 - Editing our Node.js program on MobaTextEditor .. 18

Figure 22 - Running our Node.js program ... 18

Figure 23 - Web page example generated by Node.js on our OrangePi i96 server 19

Figure 24 - Finding connectors having pitch 2.0mm (screenshot from Farnell) 19

Figure 25 - Finding connectors having pitch 2.0mm (cjk4202k/2 from rcl.lt) 19

Figure 26 - Connecting oscilloscope probes to some gpio pins by using 2-pins connectors 20

Figure 27 - Prototype board to connect oscilloscope probes by using 40-pins connector 20

Figure 28 - Making Node.js code on MobaXterm MobaTextEditor .. 21

Figure 29 - Analog connections of ADC chip. Excitation from 3V3, termistor 10k NTC. 22

Figure 30 - Digital connections to ADC chip. Resistors 5k6 .. 22

Figure 31 - Prototyping of ADC on the prototype board “SOT23-6 to DIP8” .. 23

Figure 32 - Console window showing run test of I2C bus ... 26

Figure 33 - Console window showing result of code to test I2C ... 26

Figure 34 - Shapes of I2C bus lines SDA and SCL on oscilloscope. We see that clock is 400kHz 26

 First impression

Single Board Computer module OrangePi i96 - is it possible to make any useful things based

on this module? The module is very small – the size is only 60 mm × 30mm, weight - only 30g. Pitch

of 40-pins GPIO connector is 2.0 mm, not 2.54 mm. Manufacturers page

http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-

I96.html contains more details. Price at AliExpress was 12€ (2022.02.15), but now (2022.12.07) is

about 28€. For comparison - Raspberry Pi 4B 1GB RAM at AliExpress now (2022.11.22) I found price

near 140€, Raspberry Pi 3B 1GB RAM at AliExpress now (2022.11.22) I found price about 220€.

These prices are already "discounted" by about 50% ("black sale"). Things that make to think that

something is wrong with the module OrangePi i96: 1) my module's seller company "Shenzhen

Xunlong Software CO.,Limited" now sells only other products from series OrangePi, 2) other sellers

at AliExpress do not show any sales history or users comments of product OrangePi i96 (possible

they don't have any sales 2022.11.22).

http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-I96.html
http://www.orangepi.org/html/hardWare/computerAndMicrocontrollers/details/Orange-Pi-I96.html

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 3

FIGURE 1 - OPTIONS OF ORANGEPI I96 ON PICTURE FROM MANUFACTURER'S SITE

There is no LCD screen connector on the module, but it is mentioned in the Manual. Other

product from the same products line and having same processor, is module of type Orange Pi 2G-IoT

– some software of this module may be good also for OrangePi i96.

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 4

Creating Debian system card

Below is information link how to make Debian system on module OrangePi i96:

https://jamesachambers.com/orange-pi-i96-getting-started-guide/

Link to Debian card image file from the same author:

https://github.com/TheRemote/Legendary-OrangePi-i96/releases/ (Debian Bullseye Image

v1.36 is current in 2022.11.23)

We are using Ubuntu Desktop inside virtual machine (VMware Player) hosted on Windows.

After downloading and extracting, we have the file

Legendary_OrangePi_i96_debian_bullseye_server_v1.36.img. Inserting USB adapter with inserted

16GB uSD card to computer USB port (not to uSD or to SD slot - if Ubuntu Desktop runs on VMware

virtual machine player) and checking does the Ubuntu system shows up the card. With help of the

program Disks - removing all partitions from the card. In Ubuntu files explorer - making right mouse

click on the previously extracted system disk image file. Selecting option "Open With Disk Image

Writer". Writing system image to the card. Note: it is required Ubuntu Desktop machine

administrator's password (it is not available on "Try Ubuntu and later install" variant).

Link below is just for information - there are placed other possible disk images (Android,

Debian and Ubuntu) for OrangePi i96 on manufacturers server:

https://drive.google.com/file/d/1skNNWlSgk3h2GJmjPVWuWQPiGx8-WWM2

During first run the system (Debian) will resize disk partition (our card is 16GB) to get all

available space of the card. If later we will decide to make a backup copy of this card (to have all

things configured and saved), we will understand that less size card would be better.

FIGURE 2 - AT FIRST RUN THE SYSTEM (DEBIAN) WILL RESIZE DISK PARTITION.

Serial console

Serial console is mandatory to check does the system works and allows to make initial

configuration. In the Manual we didn't find requirements for voltage of serial adapter. From the

other side, some forum user in the Internet alerted to not exceed allowed voltage (3V3 or 1V8 ?) to

this module's serial input (RX line). For this reason, we can made connection of module's TX line to

oscilloscope, and we will find, that voltage is about 3 volts (during startup period of Debian system

on uSD card).

https://jamesachambers.com/orange-pi-i96-getting-started-guide/
https://github.com/TheRemote/Legendary-OrangePi-i96/releases/
https://drive.google.com/file/d/1skNNWlSgk3h2GJmjPVWuWQPiGx8-WWM2

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 5

FIGURE 3 - SIGNAL ON TX PIN OF THE MODULE DURING INITIALIZATION OF THE SYSTEM

After, we are making modernization or switching of adapter "USB-to-Serial RX TX " to be

"3V3 compliant". Connecting serial adapter to Windows computer, checking port number in Device

Manager, running the program Realterm and configuring 4 things: speed "921600", type of view

"ANSI", port number, count of rows to watch - 50. Power On the module by using any phone

charger having micro-USB connector (5V). Below is the picture of partial dialog in Realterm console

window. Typing username orangepi and password orangepi into the console window to login to our

Debian Server.

FIGURE 4 - DEBIAN CONSOLE FIRST DIALOG.

Note: This screenshot was taken after making all required settings to the system and shows history

of last connection from ssh client.

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 6

Removing alsa

This step is required to do manually only for Ubuntu variant. In Debian variant, possible that

this step was already included by author of Debian system image.

History because it is required to remove alsa: After making first system setup (setup of WiFi)

and cold restart, Ubuntu Server freezes at some point of startup during system initialization. Search

on Internet allows to understand, that other users have had similar problems. Some users were

unable to start system in any case after reboot, but our case was "the problem after reboot after

making first step of system setup". One of suggestions was to remove alsa. One wrote that there is

absence of any sound devices on the module, so it will not be a problem to live without alsa.

Configuring WiFi

Our server will be connected to Internet by using tablet computer (Android 9, SIM card,

mobile data allowed).

In settings of Android finding the function WiFi hotspot, entering some useful SSID name and

strong password, allowing this hotspot.

In Windows Serial terminal window - login to our Debian Server (user orangepi, password

orangepi) and running the command:

$ sudo orangepi-config

Pay attention to the exact name of the command - the Manual of OrangePi i96 contains

wrong name of this command. Right command text is from initial dialog in the console window of

this server during initial system dialog.

FIGURE 5 – DEBIAN CONSOLE DIALOG AFTER SUDO ORANGEPI-CONFIG

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 7

FIGURE 6 - SELECTIONS TO CONFIGURE WI-FI

FIGURE 7 - CONSOLE DIALOG TO ENTER WI-FI AP NAME

Pictures above contain information about console dialog during system configuration

initiated by running sudo orangepi-config. Using "arrow up" or "arrow down" or "tab" keys to

navigate through controls. Selecting "Connect WiFi" and in newly opened dialog entering WiFi AP

name (SSID) and password. Doing reboot (just to be sure) of the system by using the command:

$ sudo reboot

After reboot, login to our Debian server and running a command

$ ip addr

FIGURE 8 - DEBIAN CONSOLE AFTER THE COMMAND 'IP ADDR'

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 8

Picture above shows what IP address of our Debian server is. On our Debian server, IP address stays

the same for many days independently of power on/off of the module and of the hotspot. Note:

author of Debian image system what we are using, states that module’s manufacturers Debian

image has a bug not allowing to have stable between work sessions MAC and IP addresses.

Configuring SSH

In Serial terminal window - login to our Debian server (user orangepi, password orangepi)

and running the command:

$ sudo orangepi-config

Picture below contain information about console dialog during system configuration

initiated by running sudo orangepi-config. Using "arrow up" or "arrow down" or "tab" keys to

navigate through controls. Selecting "Advanced Settings" and setting program switch to allow SSH.

Also, in Advanced settings – we can change host name from default "orangepii96" to some custom.

FIGURE 9 - UBUNTU CONSOLE DIALOG AFTER SUDO ORANGEPI-CONFIG

FIGURE 10 - DEBIAN CONSOLE DIALOG ENABLE SSH (UNDER ADVANCED SETTINGS)

Doing cold reboot of the system by using the command:

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 9

$ sudo halt

After disconnecting and reconnecting power, login to our Debian server from Windows

computer by using PowerShell tool by using the command ssh orangepi@192.168.43.209. Note1:

Serial console is still required to be sure about IP address of our server. Note2: our Windows

computer’s WiFi must be connected to the same WiFi hotspot as our Debian server.

Picture below shows communication session from Windows PowerShell.

FIGURE 11 – DEBIAN SSH CONSOLE SESSION FROM WINDOWS POWERSHELL

Configuring GPIO

In Serial terminal window - login to our Debian Server (user orangepi, password orangepi)

and running the command:

$ sudo orangepi-config

Picture below contains information about console dialog during system configuration

initiated by running sudo orangepi-config. Using "arrow up" or "arrow down" or "tab" keys to

navigate through controls. Selecting "GPIO Settings" and finding additional selections.

FIGURE 12 - CONSOLE DIALOG AFTER SUDO ORANGEPI-CONFIG

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 10

FIGURE 13 - CONSOLE DIALOG GPIO SETTINGS

FIGURE 14 - DEFAULT GPIO MAP AFTER THE COMMAND SUDO GPIO READALL

It must be possible to change direction (IN or OUT) and state (1 or 0) of any pin by using

GPIO settings dialog. But only one pin we can found working on our Debian system (pin “56” by

wiringPi naming) – because almost all pins by default are set to do ALT function.

Here is additional; good link about this theme: https://discuss.96boards.org/t/resources-for-

the-i96-orangepi/11444

The code to change initial configuration of GPIO is here:

https://wiki.pbeirne.com/patb/i96/src/master/gpio_fixup.py from the site:

https://wiki.pbeirne.com/patb/i96

We will, possible, need the command “wget”, which possible is absent on Debian by default.

Use these actions:

$ sudo apt-get update # Install the newest versions of all packages currently installed#

$ sudo apt-get upgrade

$ sudo apt install wget

https://discuss.96boards.org/t/resources-for-the-i96-orangepi/11444
https://discuss.96boards.org/t/resources-for-the-i96-orangepi/11444
https://wiki.pbeirne.com/patb/i96/src/master/gpio_fixup.py
https://wiki.pbeirne.com/patb/i96

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 11

Starting to get gpio_fixup.py:

cd /usr/local/bin

wget http://wiki.pbeirne.com/patb/i96/raw/master/gpio_fixup.py

FIGURE 15 - CONSOLE DIALOG GETTING GPIO_FIXUP.PY

FIGURE 16 - CONSOLE DIALOG EXECUTING SUDO PYTHON3 GPIO_FIXUP.PY

Next – we must make to run the command “Python3 gpio_fixup.py” during system boot.

Proposal of the author of the script gpio_fixup.py:

add a line to /etc/rc.local to execute this at startup:

sudo sed -i "/^exit 0$/i\/usr/local/bin/gpio_fixup.py" /etc/rc.local

Modifying permissions:

$ cd /usr/local/bin

$ sudo chmod +x gpio_fixup.py

Now GPIO map is correct (run sudo gpio readll):

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 12

FIGURE 17 - GPIO MAP ON MOBAXTERM CONSOLE DIALOG AFTER CORRECTING GPIO

Installing Node.js

Latest Node.js version now is "18".

But we will find, that the Node.js module onoff supports Node.js versions 10, 12, 14, 15 and

16. So, we are going to install version "16".

Using some advices from the page: https://www.makersupplies.sg/blogs/tutorials/how-to-

install-node-js-and-npm-on-the-raspberry-pi

$ sudo apt-get update

$ sudo apt-get upgrade

$ uname -m #(get processor type)

Now we know that our processor's is "armv7l " (note: L (small cap) is at the end of the code,

not the digit 1!).

https://www.makersupplies.sg/blogs/tutorials/how-to-install-node-js-and-npm-on-the-raspberry-pi
https://www.makersupplies.sg/blogs/tutorials/how-to-install-node-js-and-npm-on-the-raspberry-pi

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 13

Note: Windows PowerShell (7) allows to use clipboard to copy-paste commands into (and

from) SSH session dialog window. So, we are using SSH session on Windows PowerShell starting from

below steps. Also, noting that the command sudo -i (to become root user) works on this system.

So, our file to download is: https://nodejs.org/download/release/v16.18.1/node-v16.18.1-

linux-armv7l.tar.xz

Need additional archiving tools, because type of archive is "xz":

$ sudo apt install xz-utils

$ sudo apt-get install wget #(if not installed on some previous step)

Running the command to download the archive:

$ wget https://nodejs.org/download/release/v16.18.1/node-v16.18.1-linux-armv7l.tar.xz

Extracting the archive with the command:

$ tar -xf node-v16.18.1-linux-armv7l.tar.xz

Going to directory of extracted files:

$ cd node-v16.18.1-linux-armv7l/

Making these files accessible from any place:

$ sudo cp -R * /usr/local/

Checking node and npm version:

$ node -v

$ npm -v

Seeing that node version is 16.18.1 and npm version is 8.19.2.

Deleting now unneeded archive:

$ cd ..

$ sudo rm node-v16.18.1-linux-armv7l.tar.xz

Setting local time zone

We must correct time zone settings:

$ date

Thu Nov 24 06:36:52 UTC 2022

$ sudo timedatectl list-timezones # // get list of time zones

Find our zone from the list.

Change time zone:

https://nodejs.org/download/release/v16.18.1/node-v16.18.1-linux-armv7l.tar.xz
https://nodejs.org/download/release/v16.18.1/node-v16.18.1-linux-armv7l.tar.xz

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 14

$ sudo timedatectl set-timezone Europe/Vilnius

Now our server time is:

Thu Nov 24 08:42:56 EET 2022

Installing Node-RED

It is required to have Node.js - we already installed it in section before this.

Using advice from https://agrinode.github.io/docs/install_nodered_orangepi/

$ sudo npm install -g --unsafe-perm node-red

For Debian: the system, after node-red installation, proposed to update npm and we did

this:

$ sudo npm install -g npm@9.2.0

Now check how our node-red works:

$ node-red

Response in Console window:

Welcome to Node-RED

8 Dec 10:34:56 - [info] Node-RED version: v3.0.2

8 Dec 10:34:56 - [info] Node.js version: v16.18.1

8 Dec 10:34:56 - [info] Linux 3.10.62-rel5.0.2-legendary-v1.36 arm LE

8 Dec 10:35:02 - [info] Loading palette nodes

8 Dec 10:35:10 - [info] Settings file : /root/.node-red/settings.js

8 Dec 10:35:10 - [info] Context store : 'default' [module=memory]

8 Dec 10:35:10 - [info] User directory : /root/.node-red

8 Dec 10:35:10 - [warn] Projects disabled : editorTheme.projects.enabled=false

8 Dec 10:35:10 - [info] Flows file : /root/.node-red/flows.json

8 Dec 10:35:10 - [info] Creating new flow file

8 Dec 10:35:10 - [warn]

Your flow credentials file is encrypted using a system-generated key.

If the system-generated key is lost for any reason, your credentials file will not be

recoverable, you will have to delete it and re-enter your credentials.

You should set your own key using the 'credentialSecret' option in your settings file. Node-

RED will then re-encrypt your credentials file using your chosen key the next time you deploy a

change.

https://agrinode.github.io/docs/install_nodered_orangepi/

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 15

8 Dec 10:35:10 - [info] Server now running at http://127.0.0.1:1880/

8 Dec 10:35:10 - [warn] Encrypted credentials not found

8 Dec 10:35:10 - [info] Starting flows

8 Dec 10:35:10 - [info] Started flows

FIGURE 18 - OUR SERVER'S NODE-RED WEB PAGE ON BROWSER RUNNING ON OUR WINDOWS

Make Node-RED to work as a service

At this point the required command node-red-start does not exist in our system. The script below

must install all required dependencies and must make all required files, but doesn’t work on our

system (with error “/dev/fd/63: No such file or directory”):

https://raw.githubusercontent.com/node-red/linux-installers/master/deb/update-nodejs-and-

nodered

Now we will investigate script from above link, find required commands parts and will execute all

these commands manually (use Windows PowerShell and Windows clipboard to copy-paste):

$ sudo curl -sL -m 60 -o /usr/bin/node-red-start https://raw.githubusercontent.com/node-red

/linux-installers/master/resources/node-red-start

$ sudo curl -sL -m 60 -o /usr/bin/node-red-stop https://raw.githubusercontent.com/node-red/linux-

installers/master/resources/node-red-stop

$ sudo curl -sL -m 60 -o /usr/bin/node-red-restart https://raw.githubusercontent.com/node-

red/linux-installers/master/resources/node-red-restart

https://raw.githubusercontent.com/node-red/linux-installers/master/deb/update-nodejs-and-nodered
https://raw.githubusercontent.com/node-red/linux-installers/master/deb/update-nodejs-and-nodered

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 16

$ sudo curl -sL -m 60 -o /usr/bin/node-red-reload https://raw.githubusercontent.com/node-

red/linux-installers/master/resources/node-red-reload

$ sudo curl -sL -m 60 -o /usr/bin/node-red-log https://raw.githubusercontent.com/node-red/linux-

installers/master/resources/node-red-log

$ sudo curl -sL -m 60 -o /etc/logrotate.d/nodered https://raw.githubusercontent.com/node-

red/linux-installers/master/resources/nodered.rotate

$ sudo chmod +x /usr/bin/node-red-start

$ sudo chmod +x /usr/bin/node-red-stop

$ sudo chmod +x /usr/bin/node-red-restart

$ sudo chmod +x /usr/bin/node-red-reload

$ sudo chmod +x /usr/bin/node-red-log

$ sudo curl -sL -m 60 -o /usr/share/icons/hicolor/scalable/apps/node-red-icon.svg

https://raw.githubusercontent.com/node-red/linux-installers/master/resources/node-red-icon.svg

Now we need the file nodered.service located at /etc/systemd/system/ and with correct settings in

it. We are downloading this file from the link https://raw.githubusercontent.com/node-red/linux-

installers/master/resources/nodered.service

 to Windows computer, name it nodered.service, save it locally to Windows and make required

changes to this file:

User=orangepi

Group=orangepi

WorkingDirectory=/home/orangepi

Environment="NODE_OPTIONS=--max_old_space_size=256"

 After, we will upload corrected file by using MobaXterm from Windows file system to our server’s

directory /home/orangepi/. We are uploading this file to home directory, not to system directory,

because we don’t have permissions from MobaXterm browser to paste this file and change

permissions in system directory. When our file nodered.service appears in our home directory, we

change permissions of the file nodered.service to allow execute like in picture bellow:

https://raw.githubusercontent.com/node-red/linux-installers/master/resources/nodered.service
https://raw.githubusercontent.com/node-red/linux-installers/master/resources/nodered.service

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 17

FIGURE 19 - ALLOWING EXECUTE NODERED.SERVICE FILE

Now we must copy this file to system directory. Locate our console to home directory and execute

the commands:

$ sudo cp nodered.service /etc/systemd/system

And try to start nodered.service:

$ node-red-start // # just to check

Make to work as a service:

$ sudo systemctl enable nodered.service

$ sudo reboot

Checking on Windows computer browser address http://192.168.43.94:1880. We see that node-red

service works!

Open and edit files with MobaXterm

It will be very helpful to open and edit on our Windows computer text and code files located

inside of our Debian server. Checking how works the program Sublime Text 4 (with all required

settings on our Debian) and finding this program working and useful. But Sublime Text 4 is not free

to use to anyone. After we are finding other program, which is free for home using and contains

impressive additional function to remote browse files and also many other good functions.

Download page is this: https://mobaxterm.mobatek.net/download-home-edition.html

Using of this program is very easy - just install this program on Windows, run and enter SSH

connection data - no need any additional steps to do in Debian server installation (in opposite to

Sublime Text 4).

http://192.168.43.94:1880/
https://mobaxterm.mobatek.net/download-home-edition.html

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 18

FIGURE 20 - MOBAXTERM PROGRAM WINDOW AFTER CONNECTION TO OUR DEBIAN SERVER

FIGURE 21 - EDITING OUR NODE.JS PROGRAM ON MOBATEXTEDITOR

FIGURE 22 - RUNNING OUR NODE.JS PROGRAM

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 19

FIGURE 23 - WEB PAGE EXAMPLE GENERATED BY NODE.JS ON OUR ORANGEPI I96 SERVER

Blink LED (Node.js)

In order to toggle on-off GPIO pins, we need the module "onoff" .

https://www.npmjs.com/package/onoff

Many other GPIO libraries and methods are well described here (Comparing node.js GPIO

implementations): https://gist.github.com/jperkin/e1f0ce996c83ccf2bca9

$ npm install onoff

$ npm install spi-device # – we will need this later

FIGURE 24 - FINDING CONNECTORS HAVING PITCH 2.0MM (SCREENSHOT FROM FARNELL)

FIGURE 25 - FINDING CONNECTORS HAVING PITCH 2.0MM (CJK4202K/2 FROM RCL.LT)

https://www.npmjs.com/package/onoff
https://gist.github.com/jperkin/e1f0ce996c83ccf2bca9

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 20

Connecting oscilloscope probes to 40-pins GPIO connector. Initially we are using only

GPIO_B24 (pin25 by schematic of the module or pin56 by wiringPi) because other pins initially are

configured (by Debian firmware) to serve as ALT functions and are not accessible by using nor

Node.js library “onoff”, nor the program orangepi-config. But, after running gpio_fix.py (during boot

– as we configured previously), all pins will be accessible.

Creating some code. Initial code for this testing was taken from the:

https://www.w3schools.com/nodejs/nodejs_raspberrypi_blinking_led.asp

FIGURE 26 - CONNECTING OSCILLOSCOPE PROBES TO SOME GPIO PINS BY USING 2-PINS CONNECTORS

FIGURE 27 - PROTOTYPE BOARD TO CONNECT OSCILLOSCOPE PROBES BY USING 40-PINS CONNECTOR

https://www.w3schools.com/nodejs/nodejs_raspberrypi_blinking_led.asp

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 21

FIGURE 28 - MAKING NODE.JS CODE ON MOBAXTERM MOBATEXTEDITOR

From any of our terminal session (Serial console, Windows PowerShell or MobaXterm):

$ sudo node myblink4.js

We need to do "sudo” because there are required permissions to write pins.

It is possible to stop execution earlier than code ends - by using CTRL+Z

Using I2C ADC (Node.js)

To make measurement with I2C ADC, we will use the module " i2c-bus" :

https://www.npmjs.com/package/i2c-bus

$ npm install i2c-bus

Making schematic as shown in datasheet of ADC chip (https://www.microchip.com/en-

us/product/MCP3425) :

https://www.npmjs.com/package/i2c-bus
https://www.microchip.com/en-us/product/MCP3425
https://www.microchip.com/en-us/product/MCP3425

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 22

FIGURE 29 - ANALOG CONNECTIONS OF ADC CHIP. EXCITATION FROM 3V3, TERMISTOR 10K NTC.

FIGURE 30 - DIGITAL CONNECTIONS TO ADC CHIP. RESISTORS 5K6

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 23

FIGURE 31 - PROTOTYPING OF ADC ON THE PROTOTYPE BOARD “SOT23-6 TO DIP8”

Using Visual Studio Code editor and MobaXterm Editor. Creating the code:

/*

myi2cbustest2.js

Juozas Kimtys 2022.12.21

using example from:

https://www.npmjs.com/package/i2c-bus

selecting example version "Example 3 - Asynchronous Callbacks"

our ADC chip type is MCP3425A0T

Writing settings to chip before starting to read data.

If to not write settings, default is: 12 bits (including sign) - max positive

value in single ended mode is 2047,

 - max negative value in single ended mode is -2048,

max sample rate= 240 SPS, gain=1, continuous conversion

*/

const i2c = require('i2c-bus');

const MCP3425_ADDR = 0x68;

const MCP3425_MODE_BIT_CONV_MODE = 0b00010000; // 1 = Continuous Conversion

Mode.

const MCP3425_MODE_BITS_SAMPLE_RATE = 0b00001000; // 10 = 15 SPS (16 bits)

const MCP3425_MODE_BITS_GAIN = 0b00000000; // 00 = 1 V/V,

const MCP3425_MODE_BITS = MCP3425_MODE_BIT_CONV_MODE |

MCP3425_MODE_BITS_SAMPLE_RATE | MCP3425_MODE_BITS_GAIN;

var blnFlagModeSettingsOfAdcChipIsDone = false;

console.log('Starting i2c-bus test');

myFunc_make_ADC_chip_mode_settings();

var measurementInterval1 = setInterval(myFunc_make_measurement1, 200);

//--------------------------------------

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 24

function myFunc_make_measurement1() {

const i2c1 = i2c.open(1, err => { // connected wires to pins 15 and 17 of 40-

pins GPIO connector

 if (err) throw err;

 const rawData = Buffer.alloc(3);

 i2c1.i2cRead(MCP3425_ADDR, 3, rawData, (err) => {

 if (err) throw err;

 var intMyResultFromADC = rawData[0] * 256;

 intMyResultFromADC += rawData[1];

 console.log('Data from ADC: %i', intMyResultFromADC);

 // console.log('Status byte of ADC: %i', rawData[2]);

 calculated_temperature =

myFunc_calculate_Celcius_from_ADC_data(intMyResultFromADC);

 calculated_temperature = calculated_temperature.toFixed(2);

 console.log('Calculated temperature: %d', calculated_temperature);

 i2c1.close(err => {

 if (err) throw err;

 }); // i2c1.close

 }); // i2c1.i2cRead(

}); // const i2c1 = i2c.open(1,

} // function myFunc_make_measurement1

//--------------------------------------

function myFunc_stop_measurement1() {

 clearInterval(measurementInterval1); // Stop blink intervals

 //LED1.write(0); // Turn LED off

 //LED1.unexport(); // Unexport GPIO to free resources

}

//--------------------------------------

function myFunc_make_ADC_chip_mode_settings() {

const i2c1 = i2c.open(1, err => { // connected wires to pins 15 and 17 of 40-

pins GPIO connector

 if (err) throw err;

 const rawData = Buffer.alloc(3);

 rawData[0] = MCP3425_MODE_BITS;

 i2c1.i2cWrite(MCP3425_ADDR, 1, rawData, (err) => {

 if (err) throw err;

 console.log('Make settings of ADC chip.');

 i2c1.close(err => {

 if (err) throw err;

 blnFlagModeSettingsOfAdcChipIsDone = true;

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 25

 }); // i2c1.close

 }); // i2c1.i2cWrite(

 }); // const i2c1 = i2c.open(1,

}

//--------------------------------------

function myFunc_calculate_Celcius_from_ADC_data(intADCdata) {

var BValue = 3450;

var R1 = 10000;

var T1 = 298.15;

var R2 ;

var T2 ;

var a ;

var b ;

var c ;

var d ;

var e = 2.718281828 ;

var intMaxValueOfADC = 32767; // 16-bits, but including polarity sign

var dblReferenceVoltage = 2048; // internal reference of the MCP3425

var dblMeasurementVoltage = 3300;

var dblVoltageOnThermistor = intADCdata * (dblReferenceVoltage /

intMaxValueOfADC);

if ((dblMeasurementVoltage - dblVoltageOnThermistor) == 0)

{dblVoltageOnThermistor = dblMeasurementVoltage - 0.01;} // try to avoid

overflow in case if thermistor is not connected

var R2 = ((R1 * dblMeasurementVoltage) / (dblMeasurementVoltage -

dblVoltageOnThermistor)) - R1;

 console.log('Calculated value of NTC resistance: %d', R2.toFixed(2));

a = 1/T1;

b = Math.log10(R1/R2);

c = b / Math.log10(e);

d = c / BValue ;

T2 = 1 / (a- d);

return (T2 - 273.15);

}

//--------------------------------------

setTimeout(myFunc_stop_measurement1, 2000000); //stop measurements after 2000

seconds

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 26

FIGURE 32 - CONSOLE WINDOW SHOWING RUN TEST OF I2C BUS

FIGURE 33 - CONSOLE WINDOW SHOWING RESULT OF CODE TO TEST I2C

FIGURE 34 - SHAPES OF I2C BUS LINES SDA AND SCL ON OSCILLOSCOPE. WE SEE THAT CLOCK IS 400KHZ

Not success of using SPI ADC (Node.js)

To make measurement with SPI ADC, we will use the module "spi-device" :

https://www.npmjs.com/package/spi-device/v/3.1.2 ,

https://www.npmjs.com/package/spi-device/v/3.1.2

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 27

SPI bus works, but we will observe on oscilloscope by looking to signal SPI-SYNC, that it is impossible

to change SPI speed from “20.000.000Hz” to any other value. The module "spi-device" functions

“open” and “setOptions” really do not change anything from default initial, because it is platform

specific and do not really were implemented for this board. Our ADC need to change speed to some

100.000Hz or less – it won’t works at speed 20.000.000Hz.

Our code just for information:

/*

Test ADC of type MCP3208 on Debian 11 by using Node.js

Juozas Kimtys 2022.12.14

using examples from:

https://www.npmjs.com/package/spi-device/v/3.1.2

*/

var Gpio = require('onoff').Gpio; //include onoff to interact with the GPIO

const spi = require('spi-device');

var measurementInterval1 = setInterval(myFunc_make_measurement1, 200);

// We will not use special pin !SPI2_CS, because the library 'spi-device' do

not have possibility to switch to other CS pin (in order to use more than one

SPI device on the same bus)

var myGpio_CS_MCP3208 = new Gpio(15, 'out'); //use GPIO pin 15, and specify

that it is output

myGpio_CS_MCP3208.writeSync(1); //set pin state to 1 (deselect ADC)

// our test board contains soldered EEPROM chip on the same SPI bus.

var myGpio_CS_EEPROM = new Gpio(20, 'out'); //use GPIO pin 20, and specify

that it is output

myGpio_CS_EEPROM.writeSync(1); //set pin state to 1 (deselect EEPROM)

const intChannelCodeInitial = 0x80;

var intChannelCodeCurrent = intChannelCodeInitial;

const intCountOfChannels = 8;

var blnFlagSpiOptionsNeedToBeSet = true;

console.log('Starting spi-device test');

myGpio_CS_MCP3208.writeSync(0); //set pin state to 0 (select ADC)

//--------------------------------------

function myFunc_make_measurement1() {

 myGpio_CS_MCP3208.write(1, (err) => { //set pin state to 1 (deselect ADC)

 if (err) throw err;

 myGpio_CS_MCP3208.write(0, (err) => { //(select ADC)

 if (err) throw err;

// The MCP3208 is on bus 1 and it's device 0

const mcp3208 = spi.open(1, 0, err => {

 // An SPI message is an array of one or more read+write transfers

 const message = [{

 sendBuffer: Buffer.from([0x01, intChannelCodeCurrent, 0x00]), // Sent to

read channel 5

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 28

 receiveBuffer: Buffer.alloc(3), // Raw data read from

channel 5

 byteLength: 3,

 speedHz: 20000 // Use a low bus speed to get a good reading, but this

setting really does not work on the board OrangePi i96 on Debian, we will try

to set it soon separately

 }];

 if (err) throw err;

 if (blnFlagSpiOptionsNeedToBeSet)

 {

 mcp3208.getOptions((err, options) => {

 if (err) throw err;

 console.log('Initial options:', options);

 const myNewOptions = [{

 maxSpeedHz: 20000 // initial value was '20000000', but this

setting also really does not work on the board OrangePi i96 on Debian

 }]

 mcp3208.setOptions(myNewOptions, (err) => {

 if (err) throw err;

 blnFlagSpiOptionsNeedToBeSet = false;

 })

 });

 } // if (blnFlagSpiOptionsNeedToBeSet)

 mcp3208.transfer(message, (err, message) => {

 if (err) throw err;

 const rawValue = ((message[0].receiveBuffer[1] & 0x0F) << 8) +

 message[0].receiveBuffer[2];

 console.log(intChannelCodeCurrent, ' : ', rawValue);

 intChannelCodeCurrent += 1;

 if (intChannelCodeCurrent == (intChannelCodeInitial +

intCountOfChannels))

 {intChannelCodeCurrent = intChannelCodeInitial;}

 }); // mcp3208.transfer(message

 }); // const mcp3208 = spi.open(1

 }); // myGpio_CS_MCP3208.write(0

 }); // myGpio_CS_MCP3208.write(1

} // function myFunc_measurement1

//--------------------------------------

function myFunc_stop_measurement1() {

 clearInterval(measurementInterval1); // Stop blink intervals

 //LED1.write(0); // Turn LED off

 //LED1.unexport(); // Unexport GPIO to free resources

}

//--------------------------------------

setTimeout(myFunc_stop_measurement1, 2000000); //stop measurements after 2000

seconds

Juozas Kimtys - How to make a node of IoT by using OrangePi i96 – doc. ver.2.0 29

Revision History

Version Date Comments

ver.1.0 2022.12.14 Initial release

ver.2.0 2022.12.20 o Change the person of
writing from "I’m doing"
to "we have to do" or to
neutral.

o Keep only minimal
information about not
success to use Ubuntu.

